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EULERIAN MAPPING CLOSUREAPPROACHFORPROBABILITY DENSITY
FUNCTION OF CONCENTRATIONIN SHEARFLOWS

GUOWEIHE*

Abstract. TheEulerianmappingclosureapproachisdevelopedforuncertaintypropagationin compu-
tationalfluidmechanics.Theapproachisusedto studytheProbabilityDensityFunction(PDF)forthe
concentrationofspeciesadvectedbyarandomshearflow.Ananalyticalargumentshowsthatfluctuation
oftheconcentrationfieldatonepointinspaceisnon-Gaussianandexhibitsstretchedexponentialform.An
Eulerianmappingapproachprovidesanappropriateapproximationto bothconvectionanddiffusionterms
andleadsto aclosedmappingequation.TheresultsobtaineddescribetheevolutionoftheinitialGaussian
field,whichis inagreementwithdirectnumericalsimulations.

Key words, uncertaintypropagation,probabilitydensityfunction,mappingclosureapproximation,
concentration

Subjectclassification.FluidMechanics

1. Introduction. Uncertaintyin computationalfluiddynamicsappealsforaprobabilisticdescription
ofoutput[1,2].TheprobabilisticdescriptionisusuallyachievedbyeithermomentsorPDFs.However,both
momentandPDFapproachessuffertheclosureproblems:therearesomeunknowntermsintheirtransport
equationswhichhaveto bemodeled.In turbulencemodeling,theclosureproblemscanbeaddressedby
Kolmogorov'suniversaltheoryofsmallscalemotions.Unfortunately,suchasoundtheorydoesnotexiston
uncertaintyproblems.Therefore,wehaveto usesomeassumptionsapriori. Forexample,thelog-normal
assumptionis madein themomentapproach[3]andtheconditionaldissipationis modeledin thePDF
approach[4].Recently,mappingclosureapproximationhasbeendevelopedto calculatemomentsandPDFs
withoutanyadhoc models. The main idea of the mapping closure approximation is to keep track of the

evolution of an unknown random field by using a known reference field and a mapping function. The known

reference field is usually chosen to be a Gaussian random field, because we understand the properties of

the Gaussian closure. The dynamical evolution of the PDF is described by an evolution equation of the

mapping function; the latter is obtained directly from the original governing equation under the Gaussian

closure. This approach can be used to calculate evolution of unknown random fields in a fashion of successive

approximation, resulting in a good statistical description.

In this paper, the Eulerian mapping closure approach is developed to calculate the uncertainty propaga-

tion through stochastical dynamical systems. The chosen example is the concentration of species advected

by random shear flows. This problem is also very interesting to the turbulence community. Recent studies

[5] [13] on passive scalars have shown under some circumstances that large scale PDFs of the passive

scalar could be non-Gaussian. If the velocity fields are isotropic Gaussian and the passive scalars have zero

mean gradients, the scalar of initial homogeneous Gaussian distribution in a periodic box remain to be near

Gaussian while its derivatives are non-Gaussian. Noting that fluctuations of the scalar at a certain location

exhibit large scale behaviors and its derivatives exhibit small scale behaviors. Therefore, in this case, the

large scale PDFs are near Gaussian and small scale PDFs are non-Gaussian. Holzer and Siggia [5], and
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Pumir [6] have found that the large scale scalars with non-trivial mean gradients are non-Gaussian. Ching

and Tu [7] found that non-periodic boundary conditions can also induce non-Gaussianity of large scale scalar.

Kimura and Kraichnan [13] have shown that large scale PDFs of the scalar with non-zero mean gradient

initial conditions are exponential. The next and natural question is whether or not anisotropy of the velocity

field changes statistics of large scale scalars.

The simplest anisotropic velocity field is shear flow: the velocity has spatial variation in one direction.

Majda [9] and Maclaughlin and Majda [10] use the path integration to analytically calculate the moments

of scalar for a simple random shear velocity field. They found that the flatnesses of both passive scalar and

its derivatives are larger than the ones of Gaussian distribution. Therefore, the PDFs are non-Gaussian.

In the present paper, we will investigate the case for a periodic random shear velocity field. The PDFs of

the scalar, such as concentration, are calculated using Direct Numerical Simulation (DNS) and the mapping

closure approach. The prominent characteristics of non-Gaussianity are longer tails of the PDFs. In this

paper, we will explore how shear induces long tails and non-Gaussianity of the concentration PDFs.

2. Direct nmnerical simulations. The concentration T adveeted by the periodic random shear flows

is governed by the following equation:

OT OT OT
(2.1) O_ + _a_- + v_- = _V2T.u9

Here, the velocity field is the periodic random shear flow:

(2.2) = 0,v =  (t)lxl,

where _/(t) is Gaussian noise with 5 time correlation. Bronski and Maclaughlin [11] consider another form

of the periodic random shear flow: v = "/(t)x, which is discontinuous in the boundary.

We performed DNS for the concentration equation (2.1) in a cube of the sides 27r with periodic boundary

conditions. The initial conditions are taken as homogeneous and isotropic Gaussian field. See Fig. 4.1. The

equation (2.1) is discretized spatially using finite difference. It is integrated in time using an Euler scheme

for the first time step and an Adams-Bashforth scheme for all subsequent time steps. Fig. 4.2 shows the

concentration contour for the frozen 7(t). It can be seen that the initial homogeneous patchiness is stretched

into the sheets in the direction of shear. The stretched sheets induce the inhomogeneity of the concentration

and then non-trivial mean gradients. Thus, the PDFs of the concentration are non-Gaussian. For the 5-

correlated "y, we measure the concentration PDFs at a certain point and find that they have a longer tail

than Gaussian, see Fig. 4.3. Therefore, the non-Gaussianity of large scale PDFs are associated with the

stretched sheets.

3. Calculate the PDFs of concentration using Eulerian mapping closure approach. The

numerical observation can be interpreted using the recently developed mapping closure approach [13]. Since

shear induces inhomogeneity in space, we have to assume that the mapping function explicitly depends on

spatial coordinates:

(3.1) T = X(00; x, y, t),

where Oo(x, #) is a known random Gaussian field. If we know the mapping function (3.1), we can obtain the

PDF of the concentration using a simple transformation:



cOX]-1(3.2) P(T,x,y)= P(Oo) _o

The Liouville theorem then requires that the equation of motion for X be

(3.3) OX OX 000 _(uVXiOo}+ n(V2XlOo }O_-+ _o(_ -le°/=

It follows from (3.1) and (3.3) that

OX ( c1_ OX 02X 02X 0%¥_-_'° OO7o_ O_o _ oy_)
\

(3.4) ,#(t)lxl Oy2 Oy _o [2o_5_o oy Oo+ _o oo_)] '

where Co and cl are defined by Co = {0_}, (21 ---- ((V00)2). The function r/(t ) is the eddy diffusion dependent

on the time scale of the velocity field:

t
= (7(t)7(s)}ds.(3.5) _/(t) -_

The first term on the right side of equation (3.4) corresponds to the diffusion term of equation (2.1).

The second term on the right hand side of equation (3.4), corresponding to the convection term of equation

(2.1), introduces nonlinearity of the mapping function's spatial derivatives. If the nonlinear term in equation

(3.4) disappears, the mapping functions are obviously a linear function of 00 so that the concentration PDFs

remain Gaussian. It is this nonlinear term that produces a nonlinear mapping function and distort the

Gaussian field.

A simple perturbative analysis of equation (3.4) can be carried out as follows. For ,! = 0, the solution of

equation (3.4) is a linear function of 00. Thus, the concentration PDF remains to be Gaussian, in agreement

with the physics of diffusion. For the small _1, the solution is assumed to have the following perturbative

form

(3.6) X (0o; x, y, t) = X 0 (00; x, y, t) -}- 772 1 (00; x, y, t) -}-....

Substituting equation (3.6) into equation (3.4), we find that X0 o( 00 and Xs o( 0__ , 1 < n _< 3, for large 00-

Thus, the tail of the concentration PDF is proportional to cxp(-T2/'_). Obviously, shear introduces higher

order terms of 00, leading to a stretched exponential form of the tail of the concentration PDF.

The general solution of equation (3.4) can be obtained by numerical integration, using the same procedure

used in equation (2.1). The boundary conditions for the mapping function X are periodic in the direction

of x and y, and obtained by extrapolation in the direction of 00. The initial conditions for X are Gaussian

fields of spatial variation. The convection terms involving the velocity are treated in the conservative forms.

In Fig. 4.4, we show the behaviors of the mapping functions, at different times for a given location, with

respect to the reference Gaussian field. These mapping functions are the numerical solution of the mapping

equation (3.4). In Fig. 4.5, we plot the PDFs of the concentration T at the same times and location as in



Fig. 4.4. In the very early stage, the mapping function is kept to be almost linear by the initial Gaussian

fields and the corresponding PDF is almost Gaussian. As time passes, the nonlinear term in equation (3.4)

distorts the initial linear mapping and results in a nonlinear mapping: the central section near 00 = 0 is

almost linear but the left and right sections to the central one are polynomial-like forms. Consequently, the

PDF of the concentration consists of a Gaussian core and a stretched exponential tail. In other words, the

convection term distorts the initial isotropic Gaussian field and drives it to an inhomogeneous and anisotropie

non-Gaussian field. We compare the results obtained by the DNS and the mapping closure and find that

they are in good agreement (see Fig. 4.3).

4. Conclusion. In summary, we have obtained one-point PDFs of the concentration advected by shear

flow using two methods, DNS and mapping closure. The PDFs for both methods are non-Gaussian and

exhibit stretched exponential tails. DNS visualizes that the initial homogeneous and isotropic patchiness are

sheared into the stretched sheets in the directions of shear. By shear-induced stretches, the mapping function

is distorted fl'orn the initial linear functions to the nonlinear functions. As the result of shear, the initial

Gaussian concentration evolves into the exponential one. Moreover, the shear direction may induce different

tails of the PDFS of the eoncentration's longitudinal and transversal derivatives, leading to anisotropy of

small scale concentration [8]. We have demonstrated that the present approach of mapping closure can

track the PDF's evolution for the concentration in random shear flows. We believe that the mapping closure

approach can be used to investigate the uncertainty propagation in computational fluid dynamics.
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FIG. 4.1. The initial snapshot of homogeneous and isotropic Gaussian scalar field. Grey scales indicate the magnitudes

of scalar.

FIG. 4.2. The final snapshot of scalar field. Grey scales indicate the magnitudes of scalar.



10 0 - i

10-1

v 10.2
n

10 .3

10 -4 _ *

-10 10

' ' ' I ' ' ' ' I ' ' ' ' I ' '

h %'
, \

l/' \_\

i

-5 0 5

T

FIG. 4.3. The PDFs of scalar at some given time and a certain point. Solid line: DNS; Dash line: Mapping closure;

Dotted line: Gaussian.
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